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A study is described of the forced inertial oscillations appearing in an axially 
rotating completely filled circular cylinder with plane ends. Excitation is provided 
by causing the top end to rotate about an axis inclined slightly to the rotation 
axis. Experiments demonstrate the presence of numerous low mode resonances 
in a densely spaced range of ratios of net cylinder height to radius in close 
conformance with linear inviscid theory. Where geometry permits simple corner 
reflexion, characteristic surfaces are revealed which confirm in part the theoretical 
predictions concerning their scale and form. 

Detailed measurements are given of the amplitude at one point within the 
cylinder for the condition in which the disturbance frequency equals the rotation 
frequency. Amplitude column height spectra are compared with theoretical 
estimates, and the evolution of amplitude for the simplest mode of resonant 
oscillation is studied. A non-linear theory based on the integral energy of large 
amplitude oscillation is derived whose broad features are in fair quantitative 
and qualitative agreement with these observations. 

Some investigation is made of the phenomenon of resonant collapse, in which 
larger amplitude resonant oscillations, after persisting in an apparently laminar 
form, degenerate abruptly into a state of agitation and disorder from which they 
do not recover. It is found that the time for emergence of this collapse after the 
introduction of the forcing disturbance has a close correspondence with the 
theoretical period of one ‘evolutionary ’ cycle’of momentum exchange between 
the main motion and the secondary oscillation. 

~ ~ ~ ~ 

1. Introduction 
It is well known that inertial oscillations with a frequency less than twice the 

basic rotation i2 can exist within a fluid in uniform rotation. When the fluid is 
confined within cylindrical boundaries resonant amplification of axially periodic 
disturbances of a frequency related to discrete values of the ratio of column 
length I to radius a, is predicted in the inviscid limit. These oscillations were 
anticipated first by Kelvin (1880) and were re-examined by Bjerknes, Bjerknes, 
Solberg & Bergeron (1933). 

One of the more familiar manifestations of inertial resonance is the instability 
of liquid filled gyroscopes or spinning projectiles (Stewartson 1959), for which the 
greatest rate of growth in nutation amplitude is experienced when the nutational 
frequency is the same as that of the simplest free inertial mode (e.g. Karpov 
1965). 
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More direct studies have been made of the oscillations themselves. Fultz 
(1959) confirmed the presence of several of the simpler modes by observing the 
dispersion of dye in a rotating cylinder excited by an axially oscillating plane 
disk. Johnson ( 1967) calculated the first-order viscous correction to resonant 
column geometry and observed primary resonance in a precessing liquid-filled 
cylinder. 

Recently attention has been directed to the case of spherical boundaries for 
which excitation is derived from periodic entrainment in the boundary layers. 
Experiments by Aldridge & Toomre (1969) on a rotating liquid filled sphere 
subjected to periodic angular perturbation nicely confirmed calculations based on 
Greenspan’s (1964) expansions for motion in a viscous rotating fluid. Malkus 
reported observations in a precessing spheroid, noting the presence of a steady 
westwards circulation (sec Bretherton, Carrier & Longuet-Higgins 1966, p. 407) ; 
these were accounted for by Busse (1968) as a second-order effect of boundary- 
layer oscillation. 

The equations for inviscid perturbed fluids in rotation are hyperbolic in the 
range of frequency CT giving rise to the oscillations implying that disturbances 
originating a t  boundary discontinuities will be transmitted without attenuation 
through the bulk of the fluid along conical characteristic surfaces inclined a t  
arsin ((r/2!2) to the rotation axis. Physically these discontinuities are recognized as 
resulting from the coincident flow contributions, of an infinite sum of forced 
inertial modes decreasing in scale, but of equal frequency. Wood (1965) estimated 
the magnitude of the individual modes, establishing that the characteristics from 
the corners of a cylinder precessing a t  a small angle to the rotation axis, provided 
they ultimately re-reflected upon themselves, were realized as discontinuities in 
velocity or in velocity gradient, depending upon the geometry of the reflexion. 
Baines (1966) repeated Wood’s calculations for a cylinder in axial rotation whose 
top is deformed in a periodic fashion to retain a fixed form relative to a stationary 
observer, thereby introducing a disturbance with harmonic frequencies of the 
basic rotation. Oser (1958) has made experimental confirmation of the presence 
of characteristic surfaces in a rotating suspension of aluminium powder, per- 
turbed by an axially oscillating visible disk. Conical surfaces from the intense 
edge disturbance were seen to  be a t  the theoretical angle to the rotation axis, but 
no boundary reflexions were detected. 

Notwithstanding these observations there arise from the linearized inviscid 
solutions for cylindrically bounded motions features of questionable physical 
validity. The disturbance pressure emerges as an infinite sum of axi-symmetric 
modes as described by equation (1.2). Resonance occurs for any integral value of 
h,Zcr/n(4Q2 - vz)& a, the roots A, being related such that resonant ratios of column 
length 1 to radius a are densely spaced; thus the solution changes discontinuously 
with this ratio. In the absence of resonance an infinitesimal change in column 
length may change the distribution of characteristic surfaces within the container 
from one in which the surfaces reflect upon themselves (Zg/4!22-~~2)ta = (a 
rational fraction) to one for which an infinite number of reflexions occur and the 
characteristics are never retraced. 

In  relation to real fluids these difficulties might be regarded as artificial in that 
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viscosity would be expected to act to attenuate the modes of finer scale to  moder- 
ate discontinuous changes with boundary conditions. Greenspan ( 1968) regards the 
presence of imaginary contributions to A of order R-l (R being the Reynolds 
number defined as Qu21v) as capable of invalidating the inviscid solution for the 
modes of higher wave-number than O(R4). However, Wood (1966) established 
for his original configuration that, for large R, the inviscid solution is indeed a 
true approximation to the real fluid motion but that internal shear discontinuities 
are realized in strength O(R4) over layers O(R-4) in thickness. According to Wood, 
for small departures from rational values of Za/Q(4Q2-c2)fu there is little 
diminution in the strength of reflected layers parallel to the ‘ original ’ unless 
Ra $ In R, provided R-1T3 is small where T is an integer related to the number 
of reflexions occurring on the top and bottom surfaces (see $l.Z), a condition 
which cannot be met on an experimental scale. Baines (1967) has noted for an 
impulsively started axial oscillation of a right cylindrical container that the 
emergence of characteristic discontinuities is contingent on the viscous decay 
of initial modes, and inferred from this that the inviscid form of the ‘steady’ 
forced motion should only be approached in a viscous medium. 

These last two observations are curious in the sense that the greatest departure 
from ‘steady’ inviscid conditions is expected at  the highest Reynolds number 
(a situation finding many parallels) and places in question the relevance of a 
‘steady’ or final state description, quite apart from possible effects of finite 
amplitude of secondary motion, boundary-layer advection shear layer stability 
and the like. 

Some experimental evidence already exists to suggest that steady motion is 
not in fact sustained near resonance. Johnson identified the simplest mode 
resonance by the emergence of a ‘turbulent looking’ pattern; of Malkus’ work 
the feature regarded as most signiJicant was that, above a critical Reynolds number, 
the zonal circulation became unstable and could degenerate to violent disorder 
beyond a certain precession frequency. Malkus suggested that if the same kind 
of behaviour were to occur in the Earth’s magma, the precessional torques acting 
in the presence of the disorder might be of a magnitude sufficient to sustain 
terrestrial magnetism. Even in the study of the dynamics of liquid gyroscopes 
there is some evidence of transition to disorder when critical conditions are ex- 
ceeded; in the evolution of nutational instability Karpov noted that after an 
initial exponential growth according well with linear theory, there was an abrupt 
drop and subsequent unsteadiness in the rate of increase of amplitude at  reson- 
ance. 

The present experiments were undertaken to define the character of forced 
disturbances in a real rotating system with a view to establishing the validity 
of small amplitude inviscid descriptions, to verify estimates of the influence of 
viscosity in modifying these descriptions and to find the part played by non- 
linear effects arising from the finite amplitude of the secondary motion when 
resonance is encountered. It was revealed that the processes of evolution of 
oscillation of large amplitude a t  resonance were subject to effects making in- 
adequate use of the linear theory, and which are apparently not amenable to 
rigorous analysis, but the experiments also suggested the physical processes 
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by which the motion is sustained. An equation representing the gross features 
of these processes in the form of an energy balance was posed and its solution 
showed a moderate consistency with observations of both resonant growth and 
collapse. One of the implications is that if constraints to the oscillation imposed 
by viscosity are exceeded, a truly ‘steady state’ of oscillation may be physically 
unattainable. 

1.1. Features of the inviscid analysis 

Reference is made to figure 1. A right circular cylinder of radius a and height 
1 contains liquid in uniform axial rotation Qz. The liquid is enclosed by a plane 
top which rotates at  a rate Q about an axis inclined at  a slight angle a to z, 
which intersects z in the plane of the top. This axis may precess at  a rate Ql, 
relative to a fixed frame. Secondary motion is imposed upon the primary rotation 
of the liquid by the relative precession of the top. The net volume of the con- 
tainer remains constant. 

In  a cylindrical co-ordinate system rotating at Q1 the linearized equations for 
secondary motion q(r, q5, z, n) are 

I 8 s  8 4  A - + - + 2 0 z x q = - V P ,  
an aq5 

divq = 0, J 
where n = v7, dimensionless time, and P is the reduced hydrostatic pressure, 
(P/p - +Qzr2) (Q - Ql). The frequency of the disturbance is CT = (Q - 52,) and 
w = Q/g. The boundary conditions for motion (u, v, w)  resolved in the r ,  #, z 
directions are 

( 1 . l a )  i u=O at r = a ,  

w = O  at z = O ,  

w = amcosq5 at  z = 1. 

The equations are solved by methods similar to those outlined elsewhere 
(Wood 1965; Baines 1967); solutions pertinent to the present study are as 
follows : 

(i) For forced motion steady relative to the disturbance 

(1.2) 
where A, is the sth positive root of 

hJ,(h) + ( 2 0  - l)J,(h) = 0. (1.2a) 

In this case the disturbance motion 

q = Urcosq5+V+sin$+ Wzcoscj 

U = - (a</&+ 2w</r)/(4w2- 1), i is given by 
P = - (2waPs /ar+P, / r ) / (4d -  l ) ,  

w = apyaz. 

The intensity of the motion becomes indeterminate and the contribution of each 
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mode s changes in phase by n- as the cylinder height 1 attains successive resonant 

(1.4) 
values, 1 = ~ ( 4 ~ 2 -  1)4um/h,, 

where m is an integer. Each resonant mode is identified by the root A, and m the 
number of axial repetitions (for instance A, m3). Boundary discontinuities pro- 
duce along characteristic surfaces disturbances whose nature is identified by 
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considering the summation of (1.2) as s+m. These disturbances must retrace 
themselves after finite reflexions if 

l /a(4w2- 1)9 = BIT, (1 .5)  
where B and T are coprime integers. 

Estimation of the magnitude of the summation of the higher (large s)  modes 
enables the strength of the characteristic discontinuities to be calculated. 

The discontinuity is in velocity gradient (O(5p3) in P), except when 

BIT = 45 / (1+ 2 8 ,  (1.6) 
where 5 and 
velocity. The discontinuities occur across surfaces /3 f = constant where 

are integral, for which case the discontinuity (O(S-~)  in P) is in 

/3 k = (?/a & B/Tx/l)  (1.7) 
and substitution in the motion equations establishes that the component or the 
gradients of the component of velocity normal to these surfaces are continuous 
but that the discontinuity exists either in the component of velocity or of normal 
gradient of velocity tangential with j9 surfaces and inclined to the constant q5 
lines on these surfaces at  an angle (in+ 4). 

(ii) For free and forced oscillation after a sudden change, at n = 0, of the top 
plane from an attitude z = I + r sin q5 fixed relative to a frame rotating at a, to 
an attitude fixed in space. For n = 0 + , w = 1 and if the cylinder height 1 is such 
that one of the steady modes defined by (1 .2a )  and 1.4 is resonant, then relative 
to a spatially fixed frame 

_-  8P - 2  

- 4Mnx sin q5 sin (Mnz/1)/31/31- sin q5 cos ( M n z / l ) / 3  
(111) (IV) 

((& + ;I2 + 

(1.10) 
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The terms in (1.8) are, respectively, steady forced modes, growing and steady 
free resonant modes, initial resonant and non-resonant free modes. 

Substitution of (1.8) into the first of the equations establishes that the radial 
component of velocity on the axis, arising from the resonant mode alone is 

+cos(2n-p)]cos . (1.11) 

2. Experiments 2.1. The cylinder 

The experiments were performed on a vertically mounted Perspex cylinder 
machined within & 0.1 yo to 4.73 ern internal radius, and having a height of about 
30cm. This was mounted in a rectangular Perspex box and both vessels were 
filled with mineral turpentine, chosen for its low viscosity (1-064CS at 20 "C) and 
a refractive index close to that of Perspex. The cylinder was rotated about its 
axis on a shaft driven through interchangeable pulleys by a compound motor 
on a stabilized a.c. supply or by a three-phase induction motor. 

To simulate as closely as possible the theoretical conditions for the forcing 
disturbance, the top of the cylinder enclosing the liquid column was arranged in 
the following way. Reference is made to figure 1. The top was formed from a close 
fitting felt disk sandwiched between two brass plates of slightly smaller size. A 
ball joint at  the axis of the plates and enclosed between them connected to an 
axial rod which bore a collar and a radial arm. The collar turned freely in a 
cross-head mounted on the top of the cylinder. This cross-head through the 
collar took the weight of the rod and the top and served to minimize the relative 
axial motion of the axis of the top and the cylinder. 

On the upper plate of the top was fitted a thrust race bearing against a frame 
also mounted on the axial rod. Set screws on this frame enable the upper part of the 
race t o  be tilted relative to the rod axis, constraining the top to a rational freedom 
about an axis inclined to the rod axis, these axes intersecting in the plane of the 
top. 

Friction between the felt disk and the cylinder wall caused the top to rotate at  
a rate indistinguishable from that of the cylinder. The axial rod could be arrested 
by engaging the radial arm with a pin on the frame of the apparatus, or it could 
be rotated relative to the frame through a separate motor drive. Thus, while 
the boundaries confining a cylindrical liquid column of constant volume all 
revolved at  a sensibly constant rate, the axis of the top could be made to precess 
at  a different rate. 

The pin engaging the radial arm could be withdrawn, permitting the whole 
assembly to rotate freely with the cylinder. I n  this condition the top introduced 
no disturbance to the basic rotation of the fluid inside. By moving the rod on the 
cross-head collar the column height could be raised to 24 em. 

39 F L M  40 
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2.2. Visualization of the secondary motion 

Forced secondary motions are predicted to be steady relative to a frame stationary 
relative to the top axis. For most of the experiments this frame was stationary 
in space. The fluid in the cylinder was illuminated in a vertical diametral band 
about l.Ocm wide by light from a mercury vapour source. Photographs were 
taken by a camera located on a normal to the illuminated plane. 

Particle paths of the primary solid body rotation intersected the light beam 
parallel with the camera axis, and so would appear as dots. The secondary 
motion conferred a motion in the beam plane but the illumination period was 
limited by the beam width. Therefore conventional time exposures of SUS- 

pended particles could not reveal by particle paths secondary motion of magni- 
tude small compared with the primary. Such exposures, using very weak sus- 
pensions of particles, were used only to compare experimental and theoretical 
patterns of the lowest secondary modes. 

The main visualizations were made using a pearlescent suspension of Merlin 
AC particles. These are mica flakes 0.5pm thick, 5-20pm diameter, coated with 
titanium dioxide to raise their refractive index. The finest particles were 
separated by sedimentation and introduced to the cylinder to make a suspension 
appearing slightly cloudy in ordinary light ( N 10mg/l). 

Observed variations in the light reflected evidently resulted from the tendency 
of the particles to occupy preferred orientations relative to the viscous stress 
field (see e.g. Goldsmith & Mason 1962). The particles were individually too 
small to be identified, but en masse they revealed a constant visible pattern when 
caused by a stress field stationary to the observer, though the particles forming 
the pattern were in flux through the illuminated band. The alignment of the 
particles could be biased to a particular attitude by imposing a d.c. electric field 
of about 1 kV/cm. It was found that characteristic patterns were revealed most 
clearly by applying a vertical field between a ring electrode encompassing the 
cylinder in a plane a few centimetres above the top, and the metal base plate. 
Tests ensured that this field itself did not impose a forcing disturbance on the 
fluid. 

Notwithstanding the care taken to ensure a constant rotation speed, and in the 
fitting and alignment of the apparatus, some irregularity (a vertical striation 
with a period of about 0-l) persisted in the pattern even without deliberate 
disturbance. Its appearance suggested a two-dimensional, cylindrical eddy of 
simple form moving very slowly relative to the solid rotation. The electric field 
made the striation less visible, but did not appear to suppress the motion causing 
it. With the introduction of a forcing disturbance this ‘background’ pattern 
appeared to be dominated if the amplitude of the secondary motion was suffi- 
ciently great. Only at  non-resonant cylinder heights did it obscure the (forced’ 
pattern sought. 

2.2.1. Visual evidence of resonance for  v = R (Q1 = 0).  An observation was 
made of the patterns appearing in the fluid for a closely spaced range of column 
heights between 2.1 em and 24.6 om. In  each case the procedure was to permit the 
top assembly to turn freely with the cylinder till the solid rotation wasestablished. 
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The pin was then dropped to engage the radial arm, thus stopping the top axis 
at  a preselected phase position relative to the camera. The pattern was photo- 
graphed after a suitable interval. 

Figure 2 (a)-(0) (plates 1 and 2) is representative of those obtained before 
unsteadiness appeared in the pattern. The time elapsed after the introduction of 
the disturbance is indicated. These were obtained with a cylinder rotation 
0 = 23.3radIsec anticlockwise viewed from above and a top slope a = 0.0344. 
Illumination for these and all subsequent figures was from the right, and the plane 
q5 = 0 was located in the left of the illuminated band. The geometrical conditions 
may be located within the inviscid resonance spectrum by reference to figure 12. 
A more complete presentation of patterns is given elsewhere (McEwan 1968). 

At  each height corresponding with a resonant mode of orders up to h,m, and 
h,m,, a common feature of the observed pattern was a wavy axial core. The 
number of half waves in its length was found to equal the appropriate value of m, 
the only exceptions (e.g. figure 2 (f)) occurring when the wave pattern was modu- 
lated by a stronger adjacent mode. 

The wavy core, while it persisted, was sensibly steady in position, though it 
grew, then appeared to wane, in amplitude. For some of the higher-order reson- 
ances, a pattern appeared not at  the core but near the cylinder wall (figure 2 (n)). 

The significance of the visible cores can be appreciated by considering the 
means by which they appear. As mentioned earlier, their appearance would imply 
a systematic viscous stress upon the fluid forming the core. A uniform horizontal 
motion u superimposed upon the vertical axial rotation Q causes a displacement 
u/Q of the centre of rotation in a direction SZ x u. 

Only when the superimposed motion is uniform do the streamlines remain 
circular and coaxial, and in this circumstance no stress is experienced by the 
fluid. However, if the bounded perturbation motion of (1.2) is superimposed, il 
fluid particle has a non-circular orbit displaced from the axis, and it experiences 
a spacially fixed stress. Thus, existence of a non-uniform secondary motion is 
implied by the appearance of a visible core; its magnitude is indicated by the size 
of the waves in the core, if ‘sectioned’ appropriately by the light beam. Further- 
more, if the secondary motion is composed of a number of uncoupled modes of 
different characteristic size, the mode appearing most clearly should be that as- 
sociated with the greatest viscous stress. As will be seen inlater sections, thefunda- 
mental modes dominate in amplitude those of higher order, even for resonances 
remote from the fundamental, yet it is noted here that the higher-order modes 
are revealed in the visualization, evidently because these cause the greater 
aligning stresses. 

The patterns may therefore be reasonably interpreted as evidence of appro- 
priate resonant modes. The discrete existence of a relatively large number of 
such modes, each possessing a cell height predicted accurately by inviscid theory, 
is striking indeed, particularly in view of the density of the spectrum and the 
low Reynolds number of the experiment. Consecutive cell heights differing by as 
little as 0-13 of cylinder radius revealed different modes. Perhaps more impressive 
in this respect was the absence of coherent core distortions for non-resonant 
heights (figure 2 (h) ,  (i), (m)). 

39-2 
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A weak suspension of aluminium particles was used to reveal particle paths. 
For the lowest mode (h,m,) resonance, the short visible paths, where they could 
be distinguished, were found to conform well to the streamline section of the 
inviscid solution, when viewed in a light beam sectioning the q3 = -Qm, +Qn 
plane. Higher mode resonances and characteristic surfaces were almost un- 
recognizable by this means of visualization. 

2.2.2. Characteristic discontinuity patterns. It will have been noticed in some of 
the figures 2 that diagonal bands of light and dark are seen to spring from the 
upper corners of the container. These appeared most clearly when the ratio of 
column length to radius was close to a low integral multiple or fraction of 4 3 ,  
which by (1.6) would correspond to the occurrence of corner characteristics 
reflected upon themselves. As precisely as could be measured, the bands were 
inclined a t  30" to the rotation axis, and in some cases exhibited bottom and side 

Band appearance, left to  right - > 

Rotation 6 L.H. characteristic R.H. characteristic 
A.C.W. 0 Dark/light Darkjlight 
from above - In Not clearly visible 

-?l Lightldark Light/dark 
- 377 Not clearly visible 

C.W. 0 Dark/light t Dark/light t 
from above - &?7 Dark? Dark/light-f 

-77 t Lightidarkt 
t Very indistinct. 

TABLE 1 

reflexion (e.g. figure 2(c), (0)). Secondary motion at resonant heights tended to 
obscure the bands, though it was found that a boundary disruption to this 
secondary motion, produced, e.g. by introducing a probe into the fluid through the 
axis a t  the bottom of the vessel (see figure l), would radiate visible bands a t  the 
same angle. Lateral movement of the light beam confirmed that the bands deline- 
ated the diametral section of conical surfaces having reflecting properties dif- 
ferent from the bulk of the fluid suspension; these surfaces were thus identified 
as characteristics. 

I n  an attempt to identify the fluid strains causing the characteristics to be 
revealed in this manner, the phase of the top axis relative to the illuminated plane 
was varied through a full circle, with the experimental conditions as for figure 
2(k) @/a = 243). The observations were repeated for reversed rotation (clock- 
wise viewed from above such that L x z  was directed away from the camera, 
L being the light direction). I n  each case where they appeared, the top corner 
characteristics were adjacent bands of light and dark relative to the surrounding 
medium. A summary is given in table 1.  It was noticed that the patterns were 
scarcely visible when the plane q5 = QT, zm was illuminated, or when the rotation 
was clockwise. 

From the observations a picture can be built up of the 'preferred' attitude of 
particles forming these adjacent bands, relative to a frame fixed with respect to  
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the direction of the discontinuity, as defined by the inviscid theory (final para- 
graph, § 1.2); letting x’ and y‘ be tangent to the plane of the characteristic surface, 
parallel and normal to the discontinuity direction with z’ having an r positive 
component, the particles seem to prefer altitudes in the planes, 

x’-cIz‘I - d y ’ a . ~ / Q  = const., (2.1) 
c and d are positive constants near unity. c is discontinuous through z‘ = 0. 
K is the unit vector in the surface normal (2’) direction. 

If a fluid field has components of motion whose spatial gradients are continu- 
ous in all directions but one, then relative to the net motion on the discontinuity 
plane the stagnation streamlines on each side of the plane will meet at  different 
angles to the plane. This is in accordance with the discrete change in c through 
z‘ = 0; it can be deduced that a plate-like particle in suspension traversing the 
vicinity of a free stagnation point experiences fluid strains tending to align a 
major axis with the departing stagnation streamline. Since the fluid field contain- 
ing such a particle comprises this stagnation flow superimposed on a continuous 
flow, the experimental evidence of table 1 is taken to support to a limited extent 
predictions for the existence and direction of gradient discontinuities. 

The observed dependence of preferred attitude upon a, which suggests a non- 
reversible contribution to the velocity field cannot, however, be explained on the 
above basis.? 

For the configuration just discussed the velocity gradient discontinuities from 
the top corners are predicted to be finite. From patterns in figure 2(c) and (0) 
it is noted that when the discontinuity predicted is ‘logarithmically infinite’ 
the order of light and dark is ‘mirrored ’ at the axis (so that on both sides the inside 
of the cone appears dark). One model for this observation can be found if it is 
taken that c in (2.1) changes discontinuously from a small to a large value through 
z‘ = 0. By the same arguments as above this accords with a change in velocity 
gradient large compared with the net motion. No attempt was made to view 
these latter patterns with varying q5, so the self-consistency of the model is un- 
tested. 

The third type of discontinuity indicated in table 1 is in velocity, arising when 
Z/a = (4,8 etc.)J3/(1,3,5 etc.). One of the simplest forms attainable with the 
present apparatus, l/a = 8/43 was photographed and is compared with the theo- 
retical array in figure 3 (plate 3). Mirroring at  the axis is clearer than in the pre- 
viously discussed cases, but other definite features are difficult to identify. 

It should be remarked finally that an unsuccessful attempt was made to obtain 
directly a profile of velocity through characteristic surfaces within configurations 
of lla = 243 and 8/43, using a thermistor probe (as described in 5 3.1). No change 
in net amplitude of the oscillation could be associated definitely with the charac- 
teristics, and though the velocity spectrum showed some variation, the equipment 
was too unsophisticated to permit resolution. 

2.2.2.1. Reynolds number dependence. A series of photographs of the patterns 
appearing in the configurations, l/r = 243, were taken at rotation rates which 

t Shear stresses generated by weak azimuthal convection (9.v. Q 3) might be responsible 
for the G2 dependence. 
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In  figure 4 the bars indicate the range of width measured over regions of the 
band. The results are seen to confirm roughly to a - Q power dependence upon Cl 
in support of Wood's predictions. It must be emphasized, however, that though 
the appearance of visible bands suggest localized strains in characteristic planes, 
a better understanding of how this comes about must precede definite quantita- 
tive conclusions concerning the actual width of the strained regions. 

2.2.2.2.  Characteristics for variable c. To vary the frequency of the disturbance 
relative to the rotating frame the axial rod (figure 1) was rotated by a separate 
drive through a pulley and flexible coupling. Figure 5 is representative of the 
results. In  each case a vertical electric field of about 1 kV/cm was applied, and 
the 11' ratio was adjusted wherever possible to avoid obscuration of the charac- 
teristic pattern by resonant motion. For these photographs the disturbance 
amplitude was 0.034, and the basic rotation was between 13 and 23rad/sec, 
anticlockwise viewed from above. 

In  accord with the requirements for a hyperbolic solution to the motion 
equations, characteristic patterns only appear for Ig/2Ql < 1. Figure 5 (a )  and (i) 
(plate 4) shows the appearance beyond this range. The disturbance motion 
could be observed by eye in these cases to diminish with distance from the top. 
In  the conditions of figure 5 ( i )  oscillations immediately adjacent to the top 
could be seen to diffuse downwards. For r12Q close to but less than unity (e.g. 
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varied between 4.2 and 37.8rad/sec7 other conditions being as in figure 2. The 
width of the characteristic bands was measured on the photographic negative 
using a micro-densitometer, representative bands being traversed laterally at 
several stations along their length. From the records, the width was measurable 
from the spacing between maxima or minima bounding the band region. 



Inertial oscillations in a rotating jluid cylinder 61 5 

figure 5 ( b ) )  it was found impossible to avoid an almost immediate growth and 
collapse of resonant oscillation, obscuring the characteristic pattern. The same 
thing did not occur with g/2Q close to - 1 (the top precessing in the same direc- 
tion as the base rotation) as in figure 5 (h).  A possible explanation is seen from 
(1.2), (1.2a) and (1.3): it is noted that the disturbance amplitude is much larger 
for positive than for negative values of this ratio, owing to the appearance of 
factors (2w + I), and because, for negative w+ - 4, the lowest eigenvalue A, is 
approximately 5.135, compared with 2.405 for w+ + &. 

As g is reduced in magnitude the characteristic angle to the axis diminishes, 
and the bands become less distinct; for 1c7/2wl < 0.2 they cannot be identified 
accurately (figure 5 ( e ) ) .  Furthermore, the top corner characteristics tended to 
follow the top in its precession, and so appeared slightly unsteady to a fixed 
observer; thus the angular measurement could be considered accurate only to 
within the magnitude of the disturbance amplitude, 4 2’. 

- 1.0 0 1 *o 
u/ZQ 

FIGURE 6. Characteristic surface angle 6 to top surface. 
Dependence upon disturbance frequency u. 

Figure 6 shows the cosine of the characteristic angle measured relative to the 
top surface, as a function of disturbance frequency. Positive values of g/2Q 
correspond with top precessions that are less in sense than the basic rotation. 
It is seen that the theoretical angles are well confirmed. 

2.2.2.3. Multiple re-rejlexion of characteristics. Although quite complicated 
arrays of reflexion were at  least partly visible for low rational values of l /J(3a)  
as exemplified by figure 3, multiple reflexions for small departures from these 
values appearedvery seldom, and only the main characteristics would be revealed. 
Noting from figure 4 that the ‘thickness ’ of the discontinuity seemed to be about 
0.2 in these figures, the change in lla necessary to ‘separate ’ the characteristics is 
0.4, which is generally greater than the spacing between visible resonant modes. 
On the supposition that the clarity of the visible bands was an indication of the 
strength of the discontinuity, there was no evidence in support of Wood’s pre- 
diction that for the present situation, in which In R and R* are of the same order, 
the strength of reflected parallel layers should remain unchanged. 
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It is noted from the photographs, however, that individual characteristics 
do remain constant in strength along their length until they experience reflexion 
at the container surface or with other strong characteristics and this suggests 
that the attenuation may be due to local dissipation or distortion near the re- 
flexion line. Such local effects are not accounted for in Wood’s calculations based 
as they were on internal linear attenuation of individual modes through the 
whole fluid bulk. 

2.2.3. Visible evidence of resonunt collapse, r = Q. On the introduction of the 
forcing disturbance in all configurations, the patterns as shown in figure 2 
became visible and remained steady in form after the container had described 
a few revolutions. With resonant column lengths there would be some variation 
in the amplitude of waves in the core, but apart from an apparently uniform slow 
westwards convection (q.v. 5 3), very little evidence of secondary motion non- 
stationary with respect to an external observer. All of the photographs in figure 2 
were taken during this ‘steady’ period a t  the times indicated. I n  the case of 
h,,A, and A, resonances however, and other isolated cases of higher A,  non- 
stationary and evidently periodic disturbances became apparent after some time, 
and grew rapidIy to replace the previously steady pattern with one of disordered 
agitation. The abruptness with which the collapse to disorder took place, and 
the degree of subsequent agitation depended directly on the intensity of steady 
oscillation; after collapse a steady pattern was never fully regained, although the 
agitation waxed and waned. 

The sequence of photographs in figure 7 (plate 5) and figure 8 (plate 6) show 
steady resonant growth and collapse of the A,m, mode a t  high (4.8 x lo4) and 
low (7-7  x 103) Reynolds number. The excitation amplitude a was 0.063. Un- 
steadiness could first be perceived by eye before figures 7 ( e )  and 8 (f) were taken. 
The kink in the visible core in figure 7 ( e )  seemed to be associated with the 
intersection of the corner characteristic which can just be discerned. At the higher 
rotation speeds events in the collapse process occurred too rapidly to be dis- 
criminated by eye. A t  the lowest speeds, the collapse was protracted over 
several revolutions of the cylinder, and up to about 1.5 revolutions per second 
(R= 1.9 x 104) for conditions near resonance, there seemed to be three phases 
in the collapse: 

(I) Unsteadiness was detected first in the upper and lower corners, appearing 
as a local fluctuation in brightness of the suspended particles whose period did not 
seem to  be directly connected with the basic rotation. This grew rapidly in degree 
and extended through the whole cylinder (figure 8(f), (g),  (h) ) ;  the visible core 
became distorted and sometimes axially striated before 

(11) the pattern became completely disordered (figure 8 (i)) the bands of 
fluctuating brightness becoming more extended axially. The core pattern would 
re-emerge vaguely but without complete suppression of the disorder. 

(111) At higher rotation speeds the disorder appeared to degenerate to a finer 
scale, fully ‘turbulent’ in appearance, a t  the higher speeds this being almost 
concurrent with phase (11) (figure 7 (e), (f), (g), (h) )  the core pattern re-emerging 
periodically (figure 7 (i)). 
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Weaker excitation protracted the steady oscillation period and made the 
collapse less dramatic. Collapse would also be avoided in all other configurations 
for sufficiently weak excitation or low rotation rate, depending upon the ampli- 
tude of the steady secondary oscillation of each particular mode. 

So definite and reproducible was the emergence of the unsteady oscillation 
that the time to its appearance after the commencement of forcing could be 
measured or predicted quite accurately. Figure 9 shows the revolutions (i.e. 
h-/2n) plotted against i2 for the h,m, mode for four values of forcing amplitude 
a. In  each case the leftmost point indicates the lowest value of Q for which collapse 
could be identified with certainty. 

Further discussion of the process of resonant collapse is reserved till 9 3. 

OO 
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FIGURE 9. Revolutions of container till first appearance of unsteadiness preceding resonant 
collapse, h,m, mode. 0, a = 0.0180; 0, 0.0342; A, 0.0483; 7, 0.0608. 

2.3. Measurement of the amplitude of the secondury motion 

The net amplitude of the secondary oscillation was measured using miniature 
thermistors (S.T.C. Type U23) mounted on a fine wire fork on a probe feeding 
axially through a seal from the lower driving shaft (see figure 1). The thermistor 
leads connected through sliprings to  a d.c. bridge whose output was monitored 
on a pen recorder. The bridge was without compensation, and it was considered 
necessary therefore to  simulate closely in their calibration the conditions the 
thermistors would experience in the cylinder, namely a flow, which changed 
comparatively slowly in magnitude, but which revolved in direction about the 
thermistor a t  the rate of rotation of the container. This was achieved by calibrat- 
ing the peak output from the bridge when the thermistors were made to describe 
circular irrotutionul motions of various angular velocities and radii in a tank of 
turpentine. Details of the method are given by McEwan (1968). 
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For most measurements described in the following pages a single thermistor 
mounted horizontally about 1.3 cm above the bottom and near the axis of rota- 
tion was used. To minimize interference only the support wires intruded into 
the cylinder. Vessel temperatures were carefully stabilized. Without forced 
motion the junction temperature within the thermistor was about 15 “C above 
the surroundings. In this position, the thermistor waa most sensitive to velocities 
in the r-z plane and the calibration method avoided the necessity of determining 
separately their sensitivity to tangential motion, being based on the peak flow 
velocity normal to the thermistor axis relative to the rotating frame. In the locality 
of the thermistor when mounted in the cylinder the x component of velocity was 
always small so the measured quantity was effectively UfQa. 

2.3.1. The evolution of oscillation amplitude. The oscillation amplitude was 
plotted for a range of column configurations as a function of time after the intro- 
duction of a forcing disturbance stationary relative to a fixed observer ( B  = Q). 
Figure 10 presents representative traces. For this figure the disturbance ampli- 
tude a was 0-0342 and Q = 16*9rad/sec, R = 3.48 x lo4; each successive trace is 
separated on the ordinate by two decades in UfQa. Tabulated below is the con- 
figuration to which each trace corresponds, numbered from the lowest trace. 

Trace l la 
1 1.73 
2 1.99 
3 2.48 
4 2.95 
5 3.98 
6 4.80 

TABLE 2 

Resonance, or 
rational char. 

reflexion 

BIT = 1 
&%I 

A, mP 

Alms 
h m ,  

- 

In traces 1,3,4 and 6 only a faired curve of the peak amplitude in each cycle as a 
function of time has been drawn for the sake of clarity. In  traces 2 and 5 the full 
recorded trace has been reproduced in order to show how the resonant collapse is 
revealed in the record. The arrows indicate the time a t  which the spacial unsteadi- 
ness could first be perceived by eye. In  each of these cases the collapse occurred 
after the first peak in net amplitude of ‘steady’ oscillation and was followed by 
a period of disordered oscillation which waned before suffering further agitation, 
the cycle being repeated indefinitely but with lessening variation in peak ampli- 
tude. Apparently the disorder is ‘greater’ in the longer than the shorter column. 

From these figures, and recalling that the amplitude is presented logarith- 
mically, a decaying modulation of oscillation is noted. Furthermore, in some cases 
as for trace 4, beats can be identified in the modulation itself. The traces naturally 
suggest the initial stages of damped forced oscillation. The time scale for the de- 
cay of initial modes of free oscillation is expected to be (a2/vQ)4 or l l- lsec,  
according satisfactorily with the observations. 

The inviscid free modes of oscillation, appearing as the final bracketed terms 
in (1.8) are modulated by frequencies (y,(s) - 1)) y,(s), the dominant modulation 
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FIGURE 10. Amplitude of radial component of secondary oscillation. Measured by ther- 
~ + + n -  ~ ~ 7 o o o n l  0s a function of time after the introduction - - : - A  ^- -^^ - -_  -:- i.l-.- eL',-70 

11llk5bUI lltjltl aAlb, L U Gill1 t % w u v q  U v u u v l l l  "A v ~ u u u r ,  - 
of a forcing disturbance, a = 0.0342, R = 3.48 x lo4. Traces 1,  3, 4, 6, net peak amplitude; 
traces 2, 5, complete record. Arrows mark start of collapse. Successive traces displaced two 
decades. 
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being due to the simplest mode oscillation ~ ~ ( 1 ) ;  thus the beating period of the 
initial oscillation is 

For A, = 2.734, TR is plotted in figure 11 against column lengthlradius ratio. 
The curves repeat themselves for integral multiples of the fundamental resonance 
length. 

t 

I # t  

1 6 

lia 

FIGURE 11. Initial periodic modulation of amplitude. Dependence on cylinder configura- 
tion. Theoretical curve gives the beating period of forced with free oscillation modes. 
0,  experiment; -, inviscid theory. 

From the thermistor traces the amplitude modulation period could be measured 
directly and is plotted on the same figure. Where beating of the modulation 
occurred two separate periods could be defined and reveal on the figure crossover 
between successive harmonic forms of the first mode. Over the whole experi- 
mental range the agreement is remarkably good, and is regarded as substantial 
support for the inviscid definition of the simplest mode of free inertial oscillation. 
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2.3.2. The amplitude-column height spectrum. From a collection of records 
such as those in figure 10 the amplitude a t  the first peak and the ‘final’ ampli- 
tude was plotted against column height to give the spectrum shown in figure 12. 
For this plot CI. = 0.0342, R = 3-49 x lo4. The experimental points are compared 
with the inviscid spectrum of summed modes A, from A, to A,, with w = 1. Reson- 
ance of each mode is identified by a number. In  drawing the spectrum, steps of 
0.00866 in l /a were taken. Each downward cusp denotes a phase reversal, and a 
region of very low but finite amplitude is to be noted a t  l/a about 0.8 and 2.9. 
The curve is of logarithm modulus of radial velocity Ulna  component a t  z = 0.27a, 
r = 0, corresponding with the location of the thermistor. The experimental ‘peak’ 
spectrum is seen to  respond principally to the lowest (A,) mode suggesting that 
its amplitude arises mainly from contributions of the initial free mode of this 
resonance. The ‘final ’ spectrum likewise follows the lowest mode, and although 
responding to broad band departures from this mode, does not generally reveal 
the higher resonances to any appreciable degree. There is a marked response in 
this spectrum to the two very low amplitude regions. 

i 2 3 4 5 6 

EIa 
FIGURE 12. Amplitude-column height spectrum. Derived from measurements of radial 
velocity at  a position r = 0.038a, z = 0.270; R = 3.5 x lo4; a = 0.0342. Column height 
stationary. Amplitudes are of first peak (before collapse) and after decay of initial modes. 
0, peak amplitude; 0 ,  final amplitude; -, inviscid theory. 

2.3.2.1. ‘Continuous’ spectra. To avoid the prohibitive amount of labour 
involved in filling in the detail of the experimental spectrum the apparatus was 
modified in the following way to make the acquisition of data a semi-automatic 
process. The axial rod (see figure 1) was threaded and the collar was replaced by 
a threaded bore spur gear. On the cross-head was mounted a component planet- 
ary gear meshing with this and another coaxial gear fitted to the radial arm, to  
complete an epicyclic system giving a large reduction in nut speed from the basic 
rotation rate. The rod itself also engaged the pin through another radial arm 
so that as the cylinder turned the rod was raised (or lowered by reversing the 
direction of rotation) on the threaded gear. The dimensionless rate of rise or 
descent lil/SZa was 2.06 x lop4 and the top position was monitored electrically. 
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Figure 13 compares representative spectra obtained with an ascending (dashed) 
and descending (dotted) top, against the inviscid spectrum. As before u = 0.0342; 
the Reynolds number was slightly higher (5.2 x lo4). Again the broad features 
of the spectrum are followed, most particularly the nodes at lla = 0.8, 2-9 and 
the lowest under oscillation mode, but, although local peaks do occur in almost 
precisely the correct places, the response to higher mode resonances is indefinite. 
The apparent difference in the spectra on ascent and descent of the h peaks is 
largely a result of resonant collapse which for both the ascending and descending 
top results, persisted after the first attainment of peak amplitude. In  each case, 
this peak was displaced leftwards from the inviscid resonance position. 

0 1 2 3 4 5 6 

IIa 

FIGURE 13. Amplitude-column height spectrum obtained with top ascending or descend- 
ing a t  rate 2.06 x Ra. a = 0.0342; R = 5.2 x lo4. -, inviscid spectrum, A, to A, modes; 
_ - -  , ascending top; ..., descending top. 

The poor resolution of spectrum detail in the experimental curves appears to be 
due partly to the inability of the oscillation to undergo the rapid changes in phase 
which accompany each resonance, or to respond to the extremely narrow nodes 
of amplitude adjacent to these peaks. For much of the spectrum, the oscillation 
was ‘disordered’ to a degree by resonant collapse, which also obscured the in- 
dividual resonant peaks. The fractional change in column height occurring during 
the viscous decay of a given mode is of order 2.06 x 10-4 x Ra = 0.047. This 
‘bandwidth’, though not inordinately large, is sufficient to encompass most of 
the spectrum detail. 

Spectra for weak and strong excitation at high and low Reynolds number were 
also obtained but are presented elsewhere (McEwan 1968). At low Reynolds 
number further fine scale detail is lost in the spectrum but nodal positions and 
resonances remain near the theoretical locations. For high Reynolds number the 
peaks in the spectrum are truncated by resonant collapse. Nodal positions are 
shifted positively in l/a and resonant peaks before collapse are shifted negatively 
in as for the spectra in figures 12 and 13. Higher mode resonances are revealed 
more clearly. 
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3. Viscous and finite amplitude effects 
Till now attention has been directed mainly to establishing how closely the 

experimentally observed behaviour accords with inviscid theoretical predictions. 
With a finite Reynolds number some of what was observed might have been 
expected intuitively; in particular, since for secondary oscillatory motion the 
viscous diffusion length scale is at  least O((u/Q)+) ,  modes s of order Rf  and greater 
must be modified and are probably suppressed by viscous action. Wood’s (1966) 
analysis establishes that the viscous ‘cutoff’ occurs for modes above s = O(R)) 
so that the internal discontinuities, which cannot be sharper than the spatial 
periodicity of the components forming them, have thickness of order R-+. So 
far as they go, the present results have confirmed this. A second direct effect of 
viscosity to be anticipated is a change in oscillation induced by wall layers. 
Viscosity confers upon the roots for the boundary condition of the interior motion 
u(a) = 0, imaginary components of order R-l, thus changing by the same order 
the column proportions for resonance. One primary effect of these motions is a 
modification to the ratio of forcing and rotation frequencies, and, if it is supposed 
that the effect on this ratio is of the same order as the viscous modification itself, 
then the magnitude of the change in resonant column height can be estimated 
directly : 

which, except in the case of intense resonance, would, nevertheless, be imper- 
ceptibly small. It is not surprising, therefore, that the calculated and observed 
resonances correspond in position as well as they do. It will be seen, however, 
that finite amplitude effects arising in resonances of the lowest mode, are capable 
of an appreciable influence on the effective rotation frequency, and hence on the 
resonant column height. 

The peak amplitude of this mode at resonance is not linearly dependent on 
rotation rate, and this is sufficient evidence that the amplitude is controlled to 
some degree by viscosity; but neither is the amplitude small compared with R-f ,  
so that the non-linear terms in the momentum equation assume an importance in 
describing the flow field. 

In  the following pages, the magnitudes of linear viscous constraints are first 
predicted and found to be inadequate in defining the limits to the oscillation when 
the forcing disturbance is not small. 

The sizes of the largest non-linear contributions are estimated and their pre- 
sence is demonstratedin a simple experiment. An interpretation of their influence 
on the main oscillation field leads to a model describing the acquisition of energy 
by the secondary motion which compares favourably with the experimental 
observations. 

3. I .  Hechanisms controlling the amplitzcde of resonant oscillation 
und further experiments 

3.1.1. Observations of phase shift and amplitude evolution. In  the absence of 
viscosity, a resonant oscillation can acquire energy from the net rotation only 
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by the action of those components of the pressure field a t  the plane of the top 
in anti-phase with the top slope, acos$. The velocity field must have 
corresponding components in order that  core patterns visible in the plane $ = 0 
(figure 2) be explained. 

Referring to (1 .8) ,  in addition to weak resonant and non-resonant initial modes 
(terms 111, IV, V, VI, VII), is the main resonant growth mode (11), which increases 
linearly with time. That these modes by themselves are ineffective in describing 
the secondary field for times n 9 1 can be inferred by plotting the thermistor 
bridge output in lissajou form against sin$. Figure 14 presents the histories of 
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FIGURE 14. Amplitude and phase history of resonant oscillation. h,na, mode, R = 0.88 x lo4, 
CI. = 0.0702. Phase is shown of peak in amplitude U relative to top z = I + ar sin 4. 

peak amplitude U = lul/Qa and phase till resonant collapse for the h,m, mode, 
Q = 4-25rad/sec, a: = 0-0702. Since according to the linear field description the 
perturbation pressure is proportional to oscillation amplitude, the product of 
the two curves will represent the power extracted from the top in exciting the 
resonant mode. Notably, the peak amplitude occurs immediately before the 
oscillation reaches a position with zero antiphase component. 

I n  contrast, by (1.11) the theoretical phase of peak velocity rises, with a rapidly 
decreasing modulation of frequency 2n, to  within arsin ( - 0.99) in less than one 
container revolution. The ‘initial value ’ linear solution (( 1.8)-( 1.11))  is thus 
evidently unrealistic for the present purpose. 

The experimentally observed phase shift was monotonically prograde, i.e. 
in the direction of rotation, the peak positive radial amplitude increasing in 
phase from the third quadrant in q5. 

Unsteady oscillations preceding collapse appeared after 19 revolutions but do 
not seem from figure 14 to be associated to any marked degree with a change in 
phase or amplitude (or energy transfer). Collapse was complete a t  24 revolutions, 
after which phase changes were too rapid (O(Q)) to  be identified with oscillation 
amplitude. The mean phase shift remained small after collapse. 

3.1.2. Viscous amplitude control: linear m,agnitudes. Thus far there are no 
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direct indications of how the self control of phase is brought about in the evolution 
of the oscillation, and it is appropriate first to examine the magnitude of predict- 
able viscous effects. From Wood's (1966) linearizedviscous analysis the constraint 
arising from the appearance of non-vanishing imaginary terms in the denomi- 
nator of (1.2) and representing dissipation in the interior motion (cf. Wood's 
(7.4), (3.1), (2.14)) is only O(R-l) and is quite insufficient to produce the obser- 
vable differences between the high and low Reynolds number spectra, let alone 
the control of amplitude. Wood estimated the magnitude of the internal velocities 
and shears near to the characteristic for non-resonant column lengths, conclud- 
ing that the magnitude of the modification to the inviscid field was derived from 
the summation of individual modesO(R*) in number, each possessing a magnitude 
O(R-4) the cumulative value being O(R-*).t Tempting though it is to seek con- 
straints having this order of magnitude, these results cannot be regarded as 
pertinent when applied to individual free modes. 

The dissipation within the viscous wall layers owing to the relative movement 
of free oscillation of amplitude q is O(pu(q(2R*a), p being viscosity, while the power 
available from the top in the presence of the interior velocity field is O(pQ2aqa4) so 
long as the secondary pressure field O(paQ2qa) remains in antiphase with the top 
slope. Equating these gives an upper limit to the amplitude 

q/Qa < O(R*a). (3.2) 

This is evidently a realistic description provided the amplitude is small, but in 
the range of parameters of the present experiments viscosity gains effectiveness 
only in motions greater than the basic rotation. 

If we persevere with the notion that a truly steady state i s  possible then recog- 
nizing phase control as the physical amplitude regulating mechanism we have to  
suppose that the true averaged phase shift in the absence of viscosity would be 
zero, and propose that viscosity induces motion which if unsymmetrical might 
result in a secondary antiphase pressure field a t  the top to counter boundary 
dissipation. The highest-order contribution to such a field is O(paQquR-Q), 
so that the 'steady state ' oscillation amplitude is stabilized at  a magnitude O(R-4) 
of that given in (3.2), i.e. 

if, as was assumed before, most of the dissipation takes place in layers O(R-*) 
thick. 

Equations (3.2) and (3.3) would then be regarded as the asymptotic limits to 
q/Qa with low a a t  low and high Reynolds numbers respectively. In this case, 
however, the oscillation would under no condition be much larger than the forcing 
amplitude itself, a situation not supported by observations of resonant peaks 
typically an order of magnitude greater (and evidently truncated by collapse 
rather than by viscosity). 

3.1.3. Azimuthal circulation. For q < R-Q the non-linear terms O(q2/12) 
neglected from the momentum equation (1. l), assume a magnitude comparable 

t Wood's result applies provided O(R-4) terms are dominant over those O(R-9 In R) 
which also appear. On an experimental scale these are of the same order but the conclusion 
is not seriously jeopardized. 

40 F L M  40 

(3.3) qlQa = O k ) ,  
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with those of viscosity. If the formal description of the flow relative to the bound- 
aries its given by (1.2) were retained, it is likely that the tertiary field would also 
be symmetrical in $. The real situation, however, is one in which the main oscilla- 
tion grows after the introduction of the forcing disturbance and thereafter must 
be sustained against viscosity. The cylinder walls and bottom are $ independent, 
so that in an inviscid fluid the normal stress at these boundaries could not trans- 
mit to the cylinder walls, the axial component of the couple generated by the 
secondary pressure field acting on the sloping top surface. Thus the secondary 
motion must be initially created ut the expense of the primary rotational energy. 
Writing AQ as the scale of the loss in angular velocity (a net azimuthal, i.e. 
retrograde, westwards motion imposed on the original rotation), 

(3.4) 

with no change in total kinetic energy, if q 9 aQu. 
In  a steady-state oscillation most energy is dissipated a t  the walls in layers 

O ( R - h )  thick, at  a rate O(,uq2aR:) for the whole container. To extract power 
the cylinder drive at  this rate, the azimuthal component of the tertiary motion 
must be capable of producing a tangential shear stress O(,uq2R4/Qu2). I f  the 
thickness scale of the azimuthal component of the wall boundary layers is also - ~~ 

O(R-:u) then, as before, 
4 Q  = O(q2/Qa2). 

In both generation and steady-state conditions, therefore, the tertiary 
motion should contain an azimuthal component of the same order of magnitude. 

The presence of this motion was confirmed experimentally by mounting in 
the cylinder an axial needle, on the end of which was balanced a light free turning 
wire cross 8.5 em in diameter resting in the plane x = 4. With the cylinder in the 
resonance configuration, the rate of rotation of the cross was monitored using 
a strobo-tachometer and pen recorder for a period following the introduction 
of the forcing disturbance. Typically, the cross relative to the container assumed 
within a few revolutions a more or less constant westward rotation, which al- 
though slightly unsteady after resonant collapse, maintained the same magni- 
tude, as well as could be judged by the simple monitoring procedure. 

Figure 15 shows the results of westward drift AQ averaged over 40 revolutions 
commencing about ten revolutions after arresting the top frame, for top slopes 
of 0.035 and 0.070. In  each case, the leftmost point represents the lowest Rey- 
nolds number a t  which the drift could be measured. At less than this there seemed 
to be an abrupt drop in A!2 below the trend of points, to an almost unmeasurable 
level. This observation is significant as will be seen. 

The results are compared with the observed dependence of peak amplitude 
before resonance on Reynolds number (presented in figure 17) obtained from 
amplitude evolution traces like figure 10. Each of the solid lines on figure 15 
represents the square of the amplitude ( U l n a )  a t  the appropriate value of a, 
taking the functional dependence to be a power of Reynolds number over the 
relevant range. A common factor of 0-48 brings these lines to agreement with the 
observed azimuthal drift, which therefore appears to possess the dependence on 
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oscillation amplitude given by (3.4)) notwithstanding the fact that this amplitude 
did not remain steady. 

The preceding technique was unsuitable for measurement of the azimuthal 
motion during the initial stages of evolution, and no simple means could be 
devised for monitoring the motion continuously. To give a crude indication of the 
radially averaged motion in these stages, the following method was employed. 

R 

FIGURE 15. Westward azimuthal circulation A n  relative to basic rotation. Measured in 
plane z = & I .  h,m, resonant mode. Comparison with square of oscillation amplitude &. 

The stroboscopic lamp was flashed synchronously with the container rotation 
and the position of the cross-wire in relation to the container was observed in the 
light of each flash. By timing the arresting pin engagement to coincide with the 
flashes, it was possible to estimate within one half a container revolution, the 
number of revolutions elapsing from the cross to execute t turn, & turn, etc., 
relative to the container. 

Observations were made with the cross in the planes z = 0.27a, 1.0a and 1.99n; 
the number of container revolutions observed for a convection of one quarter- 
turn was found to be reproducible within about one revolution. 

Tabulated below are the results a t  various Reynolds numbers with a forcing 
disturbance of 0-0344. The container revolutions for one-quarter of a revolu- 
tion, and one-half a revolution of the cross are given. The convection in planes 
z = 0 . 2 7 ~  and 1 . 9 9 ~  are similar, as one might expect from the symmetry 
of the oscillation field, and both are significantly greater than in the intermediate 
plane; while in the former planes, however, the convection rate diminished more 
or less continuously with decreasing Reynolds number, in the intermediate plane 
it varied in an irregular fashion. During the evolution the cross in this plane 
would dwell in position and sometimes reverse its direction of motion during the 
first half-cycle. I n  practically all observations in the z/a = 0.27 and z/a = 1-99 
planes immediately after the introduction of the disturbance there was a small 
(about 20') pvograde motion of the cross. 

40-2 
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Unless a is very small indeed the azimuthal circulation is a good deal greater 
than the O(aR-B) Ekman induced motion which led to the estimate of change in 
column height given in (3.1).  An equation of the same form, 

A(l/a)resontnt = LW/4/doI,l mode (do/dAQt A Q  + . . . 
~~ 

(0 = 11, 

indicates the change in resonant column height to be expected from this motion. 

Plane z = 0.27a z = a  z = 1.99a Mean N for 
-7 Y+ r-J-\ -A$=+n 

-A$=*77 77 in TI in 77 (theory) 

Number of container revolutions elapsed for -A$ 

5.86 10 15 24.4 54.3t 11.3 14.9 17.5 
3.72 13 16 18.5 29.51 10.5 15.0 18.0 
2.60 13 16.5 18.5 26 12 16 19.1 
1.64 15 18.5 18.0 26 14 18 21.0 
0.79 18.5 24 58.05 70 17  24 25.4 
0.605 23 34 30.5 49 22 40 27.8 

R x 10-4 retrograde zonal convection 

A$ is the retrograde change in phase from the initial position of the cross. 
t The cross reverted almost completely to A$ = 0 before returning to the A$ = in 

$ Long hesitation in this position. 
0 No movement from A$ = 0 for 50 revolutions. 
The final column is explained in $3.1.4.1. 

position. 

TABLE 3. Measured container revolutions for $ and 8 turn retrograde 
relative motion of cross 

Allma 

a R x 104 

0,170 0.8 
4.3 
5.2 

0.0342 3.5 
0.0684 5.2 
0.0684 0.5 

5.2 

Estimated 

- 0.007 - 0'005 
- 0.016 - 0.010 
- 0.016 - 0.012 
- 0.057 - 0.031 
- 0.071 - 0.041 
- 0.077 - 0.077 
- 0.134 - 0.095 

Measured 

+ 0.01 - 0.01 
~~ 0 

0 - 

- 0.03 - 0.05 
- 0.05 - 0.03 
- 0.12 - 0.10 
- 0-20f - 

t Resonant collapse obscures amplitude peak. 

TABLE 4. Shift in column height for peak resonance amplitude A, 
mode due to finite amplitude effects 

The first derivative has a magnitude + 2-30 m for A, inviscid resonance. The 
second derivative, representing the dependence of the ratio of rotation frequency 
to the 'net '  disturbance frequency on the tertiary field (whose scale of azimuthal 
motion is an), is not defined with such certainty, since its value apparently 
depends on the non-uniform distribution of vorticity in the tertiary motion. If 
the net rotation rate changed to f2 - af2 without a proportionate change in free 
oscillation frequency from CT = Q the derivative would have the value - 1, in 
which case most intense resonance would occur a t  a column somewhat shorter 
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than the theoretical. This is the case in practice. Tabulated above (table 4) 
are the observed shifts in l /a  for peak oscillation of the mode before collapse 
from the amplitude height spectra with ascending cylinder top. Compared with 
these is Allma calculated from the above equation with ( d o l d m )  = - 1, an 
being given theoretically (by (3.11)) by energy conservation considerations. 
Agreement is fair both in sign and magnitude. 

3.1.4. Physical mechanisms for the generation and regulation of resonant oscilla- 
tion. It has been established that viscosity is not necessarily effective in limiting 
the amplitude of resonant oscillation. Further, it was noted that after very short 
times the linear initial value analysis is ineffective to describe the evolution of the 
oscillation, but that there existed a possible association between the phase of the 
oscillation and its rate of growth. 

From the remarks of the previous subsection, the impulse on the fluid by the 
top to create the oscillation results in an azimuthal motion persisting for a time at 
least O(Rg),  and it is reasonable to associate the phase change of the oscillation 
with the azimuthal motion over this time. Therefore, the oscillation might be 
considered as commencing from aninitial phase position given by the linear growth 
term (11) in (1.8) (i.e. the pressure in antiphase to the slope in the plane of the 
top), and, after a dimensionless time of order unity, as growing at a rate defined 
by its own phase relative to the top. Such behaviour is physically equivalent to 
that of a nearly resonant free mode; however for large beating periods TB (equa- 
tion (2 .2 ) ) ,  such a free mode will energize itself to an extent where the resultant 
motion affects the field description, i.e. TB 2 m-l. The ratio of rotation and 
natural frequency of an intense oscillation must be changed by an amount de- 
pending upon the azimuthal drift rate an, and the evidence of table 4 and the 
leftward shift of beating period near resonance in figure 11, suggest that the 
frequency ratio is changed by roughly the same magnitude as the retrograde 

AW N m/Q. azimuthal drift, i.e. 

3.1.4.1. Integral energy analysis for Jinite amplitude evolution. It is instructive 
now to formulate an approximate equation representing an energy balance 
between the rate of gain in kinetic energy of the free mode, the impulse provided 
by the top and the viscous dissipation. If  Q is a characteristic magnitude, taken 
for the present purpose as UJQa (U,here being the peak amplitude at  the thermis- 
tor position x = 0*27a), and the main oscillatory mode is supposed to retain a 
similar form independent of amplitude, then, ignoring temporal derivatives to 
the linear approximation of (1 .  l ) ,  the pressure field on the top surface also retains 
similarity, has a magnitude proportional to Q,  and imposes a couple, which to 
first order has an axial component, 

T = IuJ 2 n ~ ( r ,  4, +) cL cos + rZdrd4, (3.5) 

on the top surface lying in the plane z = 1 +.(./a) sin 4. + is the angle in the 4 
direction, by which the peak pressure leads the plane 4 = 7~ (i.e. the reduced 
pressure field has the form - P(r, x )  cos (4 - $). Superimposed on the pressure 
field of the resonant mode is that of forced and free non-resonant modes, terms 
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I, VI and VI I  in (1.8), and free steady resonant modes, terms 111, I V  and V. 
These exert no average torque on the top, and it is further assumed that viscosity- 
induced tertiary modes created by these modes are insignificant. 

We now consider the evolution of the lowest (A,) mode of resonant oscillation. 
The linear inviscid form of the pressure field is taken to hold for finite amplitudes; 
thus it is noted that from (1.2) and (1.3),  or (1.8) and ( l . l l ) ,  that 

P = 3aJl(r’) Q cos (q5 - $)/(cos (0.27A1/,/3) [J;(r’) + 2J,(r’)/~’],~=~, 

and 

with $(t = 0) = 0, cr = Q. Here A, = 2.73462, the first positive root of (1.2) for 
o = 1 ;  r’ = A,r/a. 

Before the momentum transferred by viscosity a t  the walls of the container 
becomes significant (i .e. before the retrograde circulation has caused an internal 
convection field to  be induced by Ekman layer entrainment), the torque at the 
top plane must equal the rate of change of angular momentum of the whole 
fluid cylinder; if A T  is the mean loss in angular velocity 

(3.7) 

With negligible dissipation in the bulk of the fluid, kinetic energy is conserved, 
so neglecting the energy in the azimuthal motion itself, 

q is the total disturbance velocity, and contains the forced modes as well as the 
resonant free mode, V is the volume. After O( Q-1) in time, the last becomes domi- 
nant, but the impulse required to establish the forced modes will have con- 
tributed to the retrograde convection an amount O(a2Q).  The magnitude of the 
integral can be estimated from the field description of (1.2) and (1.3) for the A, 
mode, giving 

From above with I ,  and I,, the value of the integrals in (3.6) and (3.8) 

dQ 
d n  1 

a 9 cos (OmA, /  J 3 )  I,a cos $ __ - - (3 .9)  

By numerical integration I, = 3.5346, I2 = 6.6667. Then for the Alm2  free mode 
a t  resonance (1  = 3 . 9 9 2 ~ )  with Q = cr in the absence of dissipation 

d Q / d n  = 0 . 1 4 5 ~ ~  cos $, 

m/!2 = 0*239(Q + O(a)),. 

(3.10) 

(3.11) 
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If the modes were truly independent of one another the first equation would 
apply after the impulsive creation of non-resonant modes; thereafter each mode 
would be associated with its own pressure field. These modes, however, make the 
contributions on the right of (3 .11 ) .  Using the steady-state field description as 
before, the terms were evaluated for modes A, to A,. For A, resonance these con- 
tributions are found by computation to be insignificant in the early stages of 
evolution. 

A third significant term in the energy balance is viscous dissipation. As men- 
tioned earlier the wall boundary-layer dissipation is dominant. Fluid particles in 
the inviscid core adjacent to the walls describe elliptical tangential paths, and 
it would appear that a fair approximation for the boundary-layer dissipation 
is had by ignoring the contributions due to the non-uniformity of this tangential 
motion. Also ignored are rotational effects, though these at  least could be cal- 
culated. For the present purpose the main effect of such terms is a small change 
in the numeric factor. 

To first order then, Stokes’s classical periodic boundary-layer description is 
applicable, with superimposed orthogonal periodic velocities; for the flow near 
the top and bottom surfaces 

q = U[cosn- e-’1 cos (n  - 7) + V{sinn- e-7 sin (n- q)] (3 .12)  

7 = 8 4 ( n / 2 v ) ,  8 being an inward surface normal. The expression for motion 
q( V ,  W ,  7) near the side walls is similar. 

Over unit surface area the energy dissipated through the layer in one cycle 
(n = 2n)  is 

The same cyclic variation in q is experienced over all elements of a circular area 
of the top or bottom, so that the dissipation on each surface in the time elapsed 
for one radian of container revolution is 

[5Jgr’- 2J0J,+ 2J; (r ’ ) ]dr’ .  (3.13) 
- p 4 2 4  Q2R-& 

2 9 cos2 ( 0 m A , /  J3) ;i loA - 

The value of the integral being 3-752 for h = A, = 2.734. A similar expression is 
derived for the cylinder wall layer. For a single module of the lowest A, mode, the 
dissipationlradian is 

the value of the bracketed quality for A = A, = 2.734 is 0.7712. 
Notwithstanding the obscurity of the association between the azimuthal 

component of the tertiary field (which appears as change in net angular velocity), 
and rate of phase change of the free oscillation relative to a stationary observer, 
it is postulated that the azimuthal motion is the only modification to the flow 
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possessing sufficient magnitude to produce this phase change. Accordingly 
we now examine the consequences of a direct linear connexioii between the 
phase change rate and the loss of net angular velocity. 

Thus, if the pressure field is convected ‘intact ’ a t  the mean azimuthal circu- 
lation rate, but in an opposite direction, 

QO 

0.2 

0 

n rad 

FIGURE 16. Solution of integral energy equation for resonant oscillation of h,m, mode. 
Dimensionless amplitude Q,,, a t  z = 0.27a, r = 0 versus dimensionless time. --, 
LY = 0.0170; - - -, a = 0.0687. Numbers give phase shift in degrees from initial position 
I+? = 0. 

Starting from an initial position with no ‘ steady-state ’ component, 
~ 

$ = S - - d n = o  AQ at n = ~ ,  Q = O ,  
o Q  

and combining (3.10), (3.11), (3.13) and (3.14) in the form of an energy balance 
for the rotating fluid system (the last two equations being brought to dimensional 
consistency with the first), then, neglecting the smaller terms in (3.11), 

- = 0.145acos 0.239Q2dn - l-O13QR-* (3.15) 
dn 

for the h,nz2 mode at resonance, and 

dn 

( S o  1 
( S o  ) 

dQ 

(3.16) _ -  a‘ - 0.290a cos 0.239 Q2dn - 1.414QR-6 

for the h,m, mode. 
These equations were solved numerically and figure 16 gives the typical forms 

for two a’s a t  various Reynolds numbers. Depending on whether the viscous 
dissipation exceeds a critical amount, the amplitude Q, after rising to a peak 
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value either falls again to zero (beyond which the solution ceases to have meaning) 
or falls at  a decreasing rate to approach zero asymptotically. The difference 
between the two types of solution is identified by the magnitude of cos +. If this 
is able to become negative while the amplitude is finite (sufficient convection has 
occurred to permit the oscillation to attempt to feed energy back into the mean 
motion), then a quick return to zero is inevitable. If viscosity prevents cos +from 

Qo 

R 

FIGURE 17. Theoretical and experimental peak amplitudes compared. A, m2 resonant 
mode. __ , resonant mode Qo only; - - - , net value, including A, to A, forced modes. 
0, a = 0.0687; 0, 0.0344; A, 0.0170. 

falling to zero the oscillation continues to extract momentum from the top at an 
ever decreasing rate. One case R = co is also presented, for which the curve is 
symmetrical, the peak occurring exactly a t  cos+ = 0. On the curves presented 
the numbers give the value of $ in degrees a t  each point marked. 

The solution is now examined in detail and compared with the observable 
properties of the amplitude traces obtained experimentally, of which figure 10 (5) 
is a typical example. The comparison is not direct because the amplitude measured 
experimentally is not merely that of the resonant mode, but contains also the 
contributions from the forced higher-order modes, which combine vectorially 
with the resonant mode. The difficulty is that the phase of these contributions is 
unknown, and their amplitude is doubtless modified by viscosity. An upper 
limit to their influence can be gauged by assuming that they possess an ampli- 
tude and phase given by the inviscid theory, i.e. the radial amplitude at  a point 
z = 0.27a. r = 0. r = fi is 

for which, with summations to s = 5, 

Qn.r. = + 1.13001 cos q5, 

Qn.r. = + 1 . 4 2 2 ~ ~  cos q5, 

with the h,m, mode geometry, 

with the hlm, mode. 

Combined vectorially with the solution for Q given by (3.15) and (3.16), the net 
amplitude QN is lowered, slightly, and the value of + is increased. Figure 17 
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gives the peak amplitude for the h,m, mode. The theoretical values of the forced 
mode alone (solid line) become dependent on half power of Reynolds number and 
directly proportional to a at low Reynolds number. The Reynolds number 
exponent diminishes continuously to zero and the amplitude becomes less 
dependent on forcing amplitude as the Reynolds number increases. The ‘net ’ 
theoretical amplitude QA, is shown as a broken line. For very low Reynolds 
number, the net amplitude does not follow the half-power relation, but asymp- 
totes to the forced amplitude of the non-resonant modes. 

300 

n 
100 

50 

_______-  ~----o---------,‘ w - - -a - - - - 
0-0 

3 

- - - - -0- - - - _- --- -- --- - - - - - n----- 
I I I 1 1 1 1 1  I I I I I a r r r  

The experimental results suggest the correct dependence upon Reynolds 
number, but are more strongly affected by forcing amplitude. The correspondence 
of theory with experiment is best between a = 0.0687 and a = 0.0344, but the 
peak amplitude for lower a is progressively overestimated. Figures 18 and 19 
compare the calculated and observed dimensionless time elapsed for attainment 
of the peak amplitude after starting the perturbation for h,m, and h,m, modes. 
As before the broken line indicates the time for the net oscillation to reach a 
maximum, which, because of the phase relation between the forced and free 
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modes, is less than that for the free oscillation alone (solid line) to reach its 
maximum. 

Agreement of theory and experiment is close both in virtual independence of 
Reynolds number and in non-linear dependence upon a. The limit for vanishing 
viscosity is marked on the right-hand ordinate. Both solid and broken lines 
asymptote. 

1000 

100 

I I I I I I I l l  I I I I I I I l l  I I 

103 104 105 

R 

FIGURE 20. Observed dimensionless time to collapse, compared with theoretical time for a 
complete evolution cycle (d$/dn = 0, Q0 + 0). For Reynolds numbers below the leftmost 
point in each group, no resonant collapse was observed. KEY : open symbols as for figure 
9, p = 1.06 CP; 0, a = 0.0687, p = 15.7 CP. 

Figure 20 shows the dimensionless time for a complete evolutionary cycle 
during which, according to the theory, the amplitude has risen to a maximum 
and fallen again to  that of the forced modes alone. From the infinite Reynolds 
number asymptote, the time rises abruptly as transition from subcritical to 
supercritical viscous dissipation is approached. For Reynolds number below the 
critical level, @ does not reach +T and the dimensionless time is infinite. 

It is near this critical region that the a terms neglected from (3.11) for the zonal 
component of the tertiary motion assume an importance, since they provide 
azimuthal motion in the absence of free oscillation, and unless account is taken 
of energy supplied by ‘spin-up ’ modes from the wall boundary layers, the abrupt 
transition to subcritical dissipation does not occur, though there is a sudden change 
in the gradient of the time line. Spin up would certainly neutralize the effect 
of the a terms for times 9 RB, but is not easily quantified for inclusion in the 
present analysis. 

Both in the approach to a constant cycle time at high R and in the existence 
of a lower limit in Reynolds number, the resemblance of the form of these curves 
to the observed revolutions (dimensionless time) to resonant collapse is at once 
apparent, and the results of figure 9 are re-presented on figure 20 for comparison. 
Also given are an ad hoc series of results obtained in a mixture of paraffin oil 
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and turpentine having a viscosity 14.8 times greater than turpentine alone. 
These latter results follow the theoretical curve remarkably closely. The others 
appear to  asymptote to a time somewhat shorter than that theoretically pre- 
dicted for complete evolution and phase reversal. In  figure 21 the apparent 
experimental asymptotes (solid lines on figure 9) are compared with the theoreti- 
cal time for complete evolution of inviscid oscillation as a function of forcing 
amplitude a. The theoretical curve lies close to an inverse power dependence 
upon a, and the experimental values are para.lle1 to this but displaced by a fa,ctor 
of about 1.2. 

U 

FIGURE 21. Evolution cycle time, R + co, compared with experirncntal asymptote for 
collapse, as indieatred by solid lines in figure 9. 

3.1.4.2. Discussion of the analysis. The analysis had the heuristic purpose of 
identifying the non-linear processes controlling the evolution of a strong resonant 
oscillation, and to  this end it is a reasonable prolegomenon to  immensely more 
complicated formal treatment. The simplifications made are, however, vulner- 
able to  criticism, and it is worthwhile first to  comment on them. 

The most important simplification is the assumption that the impulsive retro- 
grade azimuthal motion alone causes the phase shift of the resonant oscillation 
relative to  the existing disturbance. It was pointed out earlier, and the experi- 
mental data in tables 3, 4 and figures 14, 15 confirm, that the rate of change of 
phase is too rapid to  be accounted for by linear viscous modification to the 
resonance geometry, though this modification would bring about a similar but 
much slower phase shift in the initial stages of evolution. The assumption there- 
fore seems tenable. The difficulty arises, however, in supposing that, whatever 
the spatial non-uniformities in the azimuthal convection (and table 3 shows 
that these are considerable), the oscillation field remains linearly associated with 
the net rate of convection. Much more experimental work is needed to establish 
the strength of the association, It can only be noted now that the number of 
container revolutions theoretically predicted to occur for a given phase change 
(listed in the last column, table 3) lies between the extremes observed, and the 
excellent agreement between theory and experiment in the number of container 
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revolutions to peak amplitude (figures 18 and 19) indirectly suggests that the 
oscillation field effectively changes its phase at  the predicted ‘mean ’ rate. 

The second simplification is the use of the ‘ steady ’ field description to calculate 
the net energy of the oscillation field and the torque created on the top plane. 
When the oscillation becomes larger than O(a) the simplification would result 
mainly in an error in numerical factors and not in the form of (3.15) and (3.16) SO 

long as the linear field description continued to apply. Before the oscillation 
becomes large, the presence of forced and initial modes of comparable magnitude 
and orthogonal in phase cause the phase of the net oscillation measured at  a 
point to vary from the assumed II. = 0 attitude. These are the main cause of the 
initial phase fluctuation seen in figure 14. 

Note that in the absence of viscosity the dimensionless time for evolution must 
be independent of the representative velocity scale chosen, since Q is then the 
only time scale. Thus, an error in velocity scale would be undetectable from 
measurement of the time to peak amplitude, and would show as a linear factor on 
the amplitude and Reynolds number scales in solution graphs such as figures 18 
to 20. This means that inaccuracies in the numeric factors in (3.15) and (3.16) 
merely shift the curves without appreciably changing their form. Hence, the 
inadequate agreement between theory and observation in respect of the depend- 
ence of oscillation amplitude upon forcing amplitude a (see figure 16) cannot be 
resolved, and points to a shortcoming of the analysis. 

The third simplification is the adoption of the Stokes solution to give the 
wall boundary-layer dissipation; this could result in a small error in the third 
numerical factor in (3.15) and (3.16). In addition, there might also appear afactor 
containing the Reynolds number to a negative power greater than - Q, owing to 
the presence of ‘inner’ wall layers and internal shears. It is unlikely that these 
latter factors would materially affect, over the range of interest, the eharacter of 
the dependence of the solution upon Reynolds number, which is generally in 
good agreement with experiment. 

3.1.4.3. Resonant collapse. The analysis could not be expected to model the 
oscillation far beyond the amplitude peak not only due to the influence of ‘spin 
up ’ viscous modes emerging in time O(R4) but because a decrease in amplitude 
implies the transfer of momentum from the oscillation to the mean motion, a pro- 
cess during which the irreversibilities in the oscillation due to viscous dissipation 
and distortion would inevitably become apparent as the amplitude diminished. 
In  the experimental observations, the amplitude fell below the peak before 
collapse (see figure 14) but did not approach zero, though the phase followed the 
theoretical evolutionary cycle. Neither did the collapse immediately follow the 
attainment of peak amplitude. 

One further experimental observation is worth mentioning. For column heights 
reduced slightly below the inviscid resonant height, collapse was found to 
occur slightly more rapidly than for the inviscid resonance height and peak 
amplitudes were greater (see e.g. figure 12), the latter being apparently 
because the free oscillation then has a frequency closer to the net rotation 
frequency, causing a slower net movement of the oscillation relative to the 
top. Under this condition, the net phase q? relative to the top might never 
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become appreciably greater than an, and the situation would in principle tend 
to stubilize the oscillation a t  some finite value (increases in amplitude causing 
prograde net phase shift, decreases giving retrograde shift from some small 
positive cos $ position). So it is not defensible to  propose that collapse is associ- 
ated solely with the decay of the amplitude to some ‘critical’ level, or with 
the particular value of phase of the oscillation relative to the container. As the 
phase also defines the rate of energy transfer from the oscillation back into the 
mean motion (at least so long as the oscillation resembles the inviscid form), 
the likelihood of there being a ‘critical’ energy transfer rate must also be dis- 
regarded. 

The only feature of the theoretical solution, compatible both with the phase 
measurements and the last-mentioned observations, is that collapse may be 
associated with a phase maximum, a lull or reversal in the mean net direction. 
Where such a lull does not occur, for sufficiently low Reynolds number, the 
azimuthal convection rate stabilizes finally a t  some low level in accordance with 
the observations of 5 3.1.3 without resonant collapse. On the basis of the present 
experiments there is no other identifiable property of the flow field with which 
the phenomenon of resonant collapse can be associated so consistently, but it is 
noted that the role of azimuthal convection has not been investigated. The pre- 
sence of non-uniformities implies ‘ latitudes ’ of prograde and retrograde convec- 
tion when the net convection is small. However, these non-uniformities evidently 
do not bear simple relationships to the inviscid oscillation field, and the question 
of how or whether these might bring about destabilization is not tackled. In- 
deed it is possible that the correspondence between the times for theoretical 
evolution and experimental collapse is purely coincidental, but it is, nevertheless, 
germane to make the comparison. 

Maintenance of the oscillation after collapse must be brought about at  further 
expense to the angular momentum of the fluid cylinder, this in turn being 
sustained by ‘spin up’ for the container walls. Unless a continuous balance can 
be held between the regeneration and dissipation, the collapse process will repeat 
itself indefinitely, since for sufficiently great forcing amplitudes a resonant oscilla- 
tion will be able to energize itself to an extent where it effects the mean rate of 
rotation in a time shorter than the spin-up time. There is no reason to suppose 
that the limits on ct and Reynolds number for both the initiation and sustenance 
collapse are the same, but in the present experiments, once the collapse mode 
appeared, laminar oscillation was never observed to resume. 

4. Concluding remarks 
The present experiments have found that, a t  sufficiently high Reynolds num- 

bers, the linear inviscid theory for steady inertial oscillation predicts very ac- 
curately the geometrical conditions for resonance of individual modes in a rotating 
cylinder containing a real viscous fluid, and defines the broad features of the 
spectrum of oscillation amplitude with column height. The visualizing technique 
employed was particularly appropriate for the identification of the numerous 
resonances and for revealing and establishing the direction of discontinuities in 
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field across characteristic surfaces. However, while the observations confirmed 
the dependence of discontinuity thickness scale on Reynolds number, they did 
not support Wood’s prediction that imperfect corner reflexion would produce 
many parallel surfaces undiminished in strength. It seems possible that attenua- 
tion or distortion in the locality of reflexion lines has a part to play in the 
weakening of reflected characteristics. 

The effects emerging with resonance of the lower modes of oscillation (such that 
the amplitude becomes comparable to Qa) impose a limit on the applicability 
of the inviscid theory in real situations. A retrograde azimuthal circulation, 
whose presence is necessary both as a result of the initial generation of the oscilla- 
tion and for its subsequent sustenance against viscous boundary dissipation, 
appears, from the evidence of an equation representing the gross balance of 
energy in the fluid system, to be primarily responsible for the regulation of oscil- 
lation amplitude of large amplitude resonances, dominating the more direct 
viscous effects anticipated by the inclusion of dissipation in the perturbation 
motion equations. The azimuthal circulation appears to be associated with the 
phenomenon of ‘resonant collapse ’, in which unsteadiness and disorder abruptly 
appear on a previously laminar oscillation field. This is evidently not the 
emergence of shear generated instability and degeneration to  turbulence, but 
is associated with a maximum in the phase of the oscillation relative to the 
forcing disturbance. 

More rigorous analysis is needed in support of the present approximate energy 
equation, but it is suggested by this and the experiments performed that, at  
least in situations where the excitation of inertial oscillations is direct (i.e. by 
rigid boundary distortion), as occurs e.g. in the nutation of liquid filled gyro- 
scopes and projectiles, a truly steady state of inertial oscillation cannot be real- 
ized, if the Reynolds number is greater than a critical value. 

The author thanks Dr W. W. Wood and Dr P. G. Baines for introducing him 
to the subject, and for their many valuable comments in the course of the work. 
He also thanks Mr W. K. Melville, who collaborated in the first successful visual- 
ization of the characteristic surfaces. The work was performed a t  the Aeronautical 
Research Laboratories, Melbourne; the author acknowledges this institution’s 
permission to publish. 
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FIGURE 2. Secondary flow patterns as a function of cylinder geometry. cr = R. Dis- 
turbance amplitude a = 0.0344; 4 = 0 a t  left; rotation = 23.2 rad/sec, anticlockwise 
from above; illumination from right. 
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FIGURE 2(j)-(o). For legend see plate 1. 
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FIGURE 3. Charactoristic patterns for 1 = (8,/3/3) a. Theoretical array of 
velocity discontinuities compared with experiment. 
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FIGURE 5 .  For legend see facing page. 
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FIGURE 5 .  Characteristic patterns for - 2 < a/!2 < 2. Disturbance amplitndc 
a = 0.034. Illumination from right. Rotation A.C.W. from above. 
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FIGURE 7 .  For legend see facing page. 

Plate 5 



FIGURE 7 .  Stages of resonant collapse, h,m, mode. 
a! = 0.063, R = 4.8 x lo4. 

(a )  0 rev of container (f) 20.3 rev of container 
( b )  4.4 (9)  24.6 
(c) 8.3 (h)  29.0 
(d) 12.6 ( i )  32.6 
( e )  16.7 
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FIGURE 8. Stages of resonant collapse h,m,, mode. 
LZ = 0.063, R = 7 . 8 ~  lo3. 

(a) 0.59 rev of container (f)  25.1 rev of container 

(c) 10.9 (h) 30.1 
(6) 17.3 ( i)  33.2 

( b )  7.9 (9 )  27.4 

(e) 22.8 

Plate 6 
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